Abnormalities of AMPK Activation and Glucose Uptake in Cultured Skeletal Muscle Cells from Individuals with Chronic Fatigue Syndrome

نویسندگان

  • Audrey E. Brown
  • David E. Jones
  • Mark Walker
  • Julia L. Newton
چکیده

BACKGROUND Post exertional muscle fatigue is a key feature in Chronic Fatigue Syndrome (CFS). Abnormalities of skeletal muscle function have been identified in some but not all patients with CFS. To try to limit potential confounders that might contribute to this clinical heterogeneity, we developed a novel in vitro system that allows comparison of AMP kinase (AMPK) activation and metabolic responses to exercise in cultured skeletal muscle cells from CFS patients and control subjects. METHODS Skeletal muscle cell cultures were established from 10 subjects with CFS and 7 age-matched controls, subjected to electrical pulse stimulation (EPS) for up to 24h and examined for changes associated with exercise. RESULTS In the basal state, CFS cultures showed increased myogenin expression but decreased IL6 secretion during differentiation compared with control cultures. Control cultures subjected to 16 h EPS showed a significant increase in both AMPK phosphorylation and glucose uptake compared with unstimulated cells. In contrast, CFS cultures showed no increase in AMPK phosphorylation or glucose uptake after 16 h EPS. However, glucose uptake remained responsive to insulin in the CFS cells pointing to an exercise-related defect. IL6 secretion in response to EPS was significantly reduced in CFS compared with control cultures at all time points measured. CONCLUSION EPS is an effective model for eliciting muscle contraction and the metabolic changes associated with exercise in cultured skeletal muscle cells. We found four main differences in cultured skeletal muscle cells from subjects with CFS; increased myogenin expression in the basal state, impaired activation of AMPK, impaired stimulation of glucose uptake and diminished release of IL6. The retention of these differences in cultured muscle cells from CFS subjects points to a genetic/epigenetic mechanism, and provides a system to identify novel therapeutic targets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

بررسی اثر کورکومین بر میزان فسفریلاسیون AMPK وACC در سلول‌های ماهیچه‌ای رده C2C12

Introduction: AMP activated protein kinase (AMPK) as key regulators of cell metabolism, plays a major role in the activation of catabolic pathways, such as glucose transport and fatty acid oxidation. Thus, activation of this pathway can be used in the treatment of diabetes and metabolic syndrome. Many studied proposed the effectiveness of the polyphenols present in rhizomes of turmeric (curcumi...

متن کامل

Methotrexate promotes glucose uptake and lipid oxidation in skeletal muscle via AMPK activation.

Methotrexate (MTX) is a widely used anticancer and antirheumatic drug that has been postulated to protect against metabolic risk factors associated with type 2 diabetes, although the mechanism remains unknown. MTX inhibits 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/inosine monophosphate cyclohydrolase (ATIC) and thereby slows the metabolism of 5-aminoimidazole-4-carboxamide...

متن کامل

AMPK and the biochemistry of exercise: implications for human health and disease.

AMPK (AMP-activated protein kinase) is a phylogenetically conserved fuel-sensing enzyme that is present in all mammalian cells. During exercise, it is activated in skeletal muscle in humans, and at least in rodents, also in adipose tissue, liver and perhaps other organs by events that increase the AMP/ATP ratio. When activated, AMPK stimulates energy-generating processes such as glucose uptake ...

متن کامل

Characterization of the role of the AMP-activated protein kinase in the stimulation of glucose transport in skeletal muscle cells.

Stimulation of AMP-activated protein kinase (AMPK) in skeletal muscle has been correlated with an increase in glucose transport. Here, we demonstrate that adenoviral-mediated expression of a constitutively active mutant of AMPK alpha leads to activation of glucose transport in a skeletal-muscle cell line, similar to that seen following treatment with 5-amino-imidazolecarboxamide (AICA) riboside...

متن کامل

Anti-diabetic phytochemicals that promote GLUT4 translocation via AMPK signaling in muscle cells

Skeletal muscles are the largest tissue in our body and play an important role in maintaining glucose homeostasis. Cultured L6 myotubes and C2C12 myotubes are useful to construct simple glucose uptake assay systems, to screen various phytochemicals that promote glucose uptake, and to clarify their modes of actions. In skeletal muscles, insulin promotes glucose uptake by activating phosphatidyli...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015